翻訳と辞書
Words near each other
・ Gaussian process
・ Gaussian process emulator
・ Gaussian q-distribution
・ Gaussian quadrature
・ Gaussian quantum Monte Carlo
・ Gaussian random field
・ Gaussian rational
・ Gaussian surface
・ Gaussian units
・ Gaussian year
・ Gaussig House
・ Gaussiran Glacier
・ Gausson
・ Gausson (physics)
・ Gauss–Boaga projection
Gauss–Bonnet gravity
・ Gauss–Bonnet theorem
・ Gauss–Codazzi equations
・ Gauss–Hermite quadrature
・ Gauss–Jacobi quadrature
・ Gauss–Kronrod quadrature formula
・ Gauss–Krüger coordinate system
・ Gauss–Kuzmin distribution
・ Gauss–Kuzmin–Wirsing operator
・ Gauss–Laguerre quadrature
・ Gauss–Legendre algorithm
・ Gauss–Legendre method
・ Gauss–Lucas theorem
・ Gauss–Manin connection
・ Gauss–Markov


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gauss–Bonnet gravity : ウィキペディア英語版
Gauss–Bonnet gravity
In general relativity, Gauss–Bonnet gravity, also referred to as Einstein–Gauss–Bonnet gravity, is a modification of the Einstein–Hilbert action to include the Gauss–Bonnet term (named after Carl Friedrich Gauss and Pierre Ossian Bonnet) G= R^2 - 4R^R_ + R^R_
:\int d^Dx \sqrt\, G
This term is only nontrivial in 4+1D or greater, and as such, only applies to extra dimensional models. In 3+1D and lower, it reduces to a topological surface term. This follows from the generalized Gauss–Bonnet theorem on a 4D manifold
:\frac\int d^4x \sqrt\, G = \chi(M).
Despite being quadratic in the Riemann tensor (and Ricci tensor), terms containing more than 2 partial derivatives of the metric cancel out, making the Euler–Lagrange equations second order quasilinear partial differential equations in the metric. Consequently, there are no additional dynamical degrees of freedom, as in say f(R) gravity.
More generally, we may consider
:\int d^Dx \sqrt\, f\left( G \right)
term for some function ''f''. Nonlinearities in ''f'' render this coupling nontrivial even in 3+1D. However, fourth order terms reappear with the nonlinearities.
== See also ==

* Einstein–Hilbert action
* f(R) gravity
* Lovelock gravity

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gauss–Bonnet gravity」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.